A stochastic movement simulator improves estimates of landscape connectivity.
نویسندگان
چکیده
Conservation actions often focus on restoration or creation of natural areas designed to facilitate the movements of organisms among populations. To be efficient, these actions need to be based on reliable estimates or predictions of landscape connectivity. While circuit theory and least-cost paths (LCPs) are increasingly being used to estimate connectivity, these methods also have proven limitations. We compared their performance in predicting genetic connectivity with that of an alternative approach based on a simple, individual-based "stochastic movement simulator" (SMS). SMS predicts dispersal of organisms using the same landscape representation as LCPs and circuit theory-based estimates (i.e., a cost surface), while relaxing key LCP assumptions, namely individual omniscience of the landscape (by incorporating perceptual range) and the optimality of individual movements (by including stochasticity in simulated movements). The performance of the three estimators was assessed by the degree to which they correlated with genetic estimates of connectivity in two species with contrasting movement abilities (Cabanis's Greenbul, an Afrotropical forest bird species, and natterjack toad, an amphibian restricted to European sandy and heathland areas). For both species, the correlation between dispersal model and genetic data was substantially higher when SMS was used. Importantly, the results also demonstrate that the improvement gained by using SMS is robust both to variation in spatial resolution of the landscape and to uncertainty in the perceptual range model parameter. Integration of this individual-based approach with other developing methods in the field of connectivity research, such as graph theory, can yield rapid progress towards more robust connectivity indices and more effective recommendations for land management.
منابع مشابه
استفاده از تئوری مدارهای الکتریکی جهت شناسایی کریدورهای مهاجرتی بین پناهگاههای حیات وحش موته و قمشلو در استان اصفهان
Modeling of ecological connectivity across landscape is important for understanding a wide range of ecological processes. Modeling ecological connectivity between habitats and incorporating these models into conservation planning require quantifying the effect of spatial patterns of landscape on the degree of habitats connectivity. Recently, concepts from electrical circuit theory have been ad...
متن کاملConnectivity in an agricultural landscape as reflected by interpond movements of a freshwater turtle.
Connectivity is a measure of how landscape features facilitate movement and thus is an important factor in species persistence in a fragmented landscape. The scarcity of empirical studies that directly quantify species movement and determine subsequent effects on population density have, however, limited the utility of connectivity measures in conservation planning. We undertook a 4-year study ...
متن کاملAssessment and Comparison of Landscape Connectivity in KoozehTopraghi Watershed, Ardabil Province
Following the unbalanced development and overexploitation of the country's watersheds, land fragmentation has become a major concern for the conservation of ecosystem services and land health. For this purpose, the present study was planned to evaluate and compare the landscape connectivity indices of KoozehTopraghi Watershed as one of the ecologically susceptible watersheds located in Ardabil ...
متن کاملکاربرد تئوری گرف در مطالعات اکولوژی سیمای سرزمین نمونه موردی: سنجش پیوستگی زیستگاههای کلانشهر ملبورن
A new method to quantify, monitore and assess ecological structures and functions is the application of graph theory. In ecology, this theory demonstrates its suitable application in assessment of ecological connectivity. Connectivity is the structural attribute of landscape which facilitates the species movement among their habitats. Using graph theory, this paper aims to assess the connectivi...
متن کاملMulti-species genetic connectivity in a terrestrial habitat network
BACKGROUND Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the effects of habitat fragmentation for a larger number o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 96 8 شماره
صفحات -
تاریخ انتشار 2015